谷歌浏览器插件
订阅小程序
在清言上使用

Variation in the formation characteristics of PBDD/F, brominated PAH, and PBDE congeners along the secondary copper smelting processes.

Journal of hazardous materials(2022)

引用 0|浏览19
暂无评分
摘要
Simultaneous determination of 58 congeners of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs), brominated polycyclic aromatic hydrocarbons (Br-PAHs), and polybrominated diphenyl ethers (PBDEs) from multiple stages of industrial-scale secondary copper smelting plants was conducted with the aim of understanding their variations and control. In addition to the historical manufacture of PBDEs as brominated flame retardants, this study confirmed that PBDEs can be unintentionally produced and released from the secondary copper industry. The average mass emission factors of PBDD/Fs, PBDEs, and Br-PAHs from different sources were 10.0, 5.21 × 103, and 7.24 × 103 μg t-1, respectively. Therefore, the emission of brominated persistent organic pollutants (POPs) in the secondary copper industry should be of concern. The concentration of brominated POPs increased from the gas cooling stage to stack outlet due to the possible "memory effect" and the regenerated POPs were mainly low-brominated homologs. A comparison of brominated POPs with corresponding chlorinated analogs in the same process indicated that the formation pathway of Br-PAHs was consistent with that of chlorinated PAHs. However, unlike chlorinated dioxins and furans, PBDD/Fs can also be formed from PBDEs as precursors, leading to obvious increases in highly brominated furans. Therefore, inhibiting the unintentional formation of PBDEs is important for controlling brominated POPs emissions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要