Biomass Production and Nutrient Removal by Perennial Energy Grasses Produced on a Wet Marginal Land

BIOENERGY RESEARCH(2022)

引用 2|浏览6
暂无评分
摘要
Growing dedicated bioenergy crops on marginal land can provide beneficial outcomes including biomass production and energy, resource management, and ecosystem services. We investigated the effects of harvest timing (peak standing crop [PEAK] or after killing frost [KF]) and nitrogen (N) fertilizer rates (0, 56, and 112 kg N ha −1 ) on yield, nutrient concentrations, and nutrient removal rates of perennial grasses on a wet marginal land. We evaluated three monocultures, including switchgrass ( Panicum virgatum L., SW), Miscanthus x giganteus (MG), prairie cordgrass ( Spartina pectinata Link, PCG), and a polyculture mixture of big bluestem ( Andropogon gerardii Vitman), Indiangrass ( Sorghastrum nutans (L.) Nash), and sideoats grama ( Bouteloua curtipendula Torr., MIX). Increasing the application of N did correlate with increased biomass, concentration, and subsequent removal of nutrients across almost all treatment combinations. In all grass treatments except MG, PEAK harvesting increased yield and nutrient removal. At PEAK harvest, switchgrass is ideal for optimizing both biomass production and nutrient removal. While our results also suggest short-term plasticity for farmers when selecting harvest timing for optimal nutrient removal, KF harvest is recommended to ensure long-term stand longevity and adequate nutrient removal. If the KF harvest is adopted, MG would be the ideal option for optimizing biomass yield potential. Additionally, we found that the yield of polyculture did not vary much with harvest timing, suggesting better yield stability. Future studies should give consideration for long-term evaluation of polyculture mixtures to assess their biomass yields and nutrient removal capacities.
更多
查看译文
关键词
Nitrogen,Removal,Harvest timing,Perennial grass,Vegetative buffer,Bioenergy crops,Marginal land
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要