Increasing the Ionic conductivity and Lithium-Ion Transport of Photo-Cross-Linked Polymer Electrolytes with Hexagonal Arranged Porous Film Hybrids

iScience(2022)

引用 2|浏览2
暂无评分
摘要
Summary: High ionic conductivity, suitable mechanical strength, and electrochemical stability are the main requirements for high-performance poly(ethylene oxide)-based electrolytes. However, the low ionic conductivity owing to the crystallinity of the ethylene oxide chain that limits the discharge rate and low-temperature performance has restricted the development and commercialization of these electrolytes. Lithium electrolytes that combine high ionic conductivity with a high lithium transference number are rare and are essential for high-power batteries. Here, we report hexagonal arranged porous scaffolds for holding prototype polyethylene glycol-based composite electrolytes containing solvate ionic liquid. The appealing electrochemical and thermal properties indicate their potential as electrolytes for safer rechargeable lithium-ion batteries. The porous scaffolds in the composite electrolytes ensure better electrochemical performance towing to their shortened pores (sizes of 3-14 μm), interconnected pathways, and improved lithium mobility. We demonstrate that both molecular design and porous microstructures are essential for improving performance in polymer electrolytes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要