Oxidation-Resistant MXene-Based Melamine Foam with Ultralow-Percolation Thresholds for Electromagnetic-Infrared Compatible Shielding

ACS APPLIED MATERIALS & INTERFACES(2022)

引用 8|浏览2
暂无评分
摘要
To effectively avoid the drawbacks of conventional metal-based electromagnetic interference (EMI) shielding materials such as high density and susceptibility to corrosion, a multifunctional melamine foam (MF) consisting of MXene/polydimethylsiloxane (PDMS) layers with ultralow percolation thresholds was designed through the electrostatic self-assembly and impregnation strategies. The prepared lightweight foams simultaneously show multifunctional properties including EMI shielding, infrared (IR) stealth, oxidation-resistance, and compression stability. Typically, this multifunctional foam exhibits an excellent EMI shielding efficiency (EMI SE) of 45.2 dB at X-band (8.2-12.4 GHz) with only 1.131 vol % MXene filler. Moreover, the temperature difference between the upper and lower surfaces of the foam can be maintained at 45 degrees C due to its unique three-dimensional (3D) porous structure and low infrared emissivity. The MF skeleton with MXene/PDMS (MFMXP) displays high hydrophobicity, which remains stable in EMI SE after 60 days of exposure to air. Additionally, it shows outstanding mechanical stability after 100 cycles of compression experiments. The lightweight stealth nanocomposite foams can operate stably in complex environments and show high potential for applications in high-tech fields such as wearable electronics, the military, and semiconductors, etc.
更多
查看译文
关键词
melamine foam,Ti3C2Tx MXene,electromagnetic interference shielding,infrared stealth,percolation threshold,oxidation-resistant
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要