Divergent clinical outcomes in a phase 2B trial of the TLPLDC vaccine in preventing melanoma recurrence and the impact of dendritic cell collection methodology: a randomized clinical trial

Cancer immunology, immunotherapy : CII(2022)

引用 2|浏览17
暂无评分
摘要
Background A randomized, double-blind, placebo-controlled phase 2b trial of the tumor lysate, particle-loaded, dendritic cell (TLPLDC) vaccine was conducted in patients with resected stage III/IV melanoma. Dendritic cells (DCs) were harvested with and without granulocyte-colony stimulating factor (G-CSF). This analysis investigates differences in clinical outcomes and RNA gene expression between DC harvest methods. Methods The TLPLDC vaccine is created by loading autologous tumor lysate into yeast cell wall particles (YCWPs) and exposing them to phagocytosis by DCs. For DC harvest, patients had a direct blood draw or were pretreated with G-CSF before blood draw. Patients were randomized 2:1 to receive TLPLDC or placebo. Differences in disease-free survival (DFS) and overall survival (OS) were evaluated. RNA-seq analysis was performed on the total RNA of TLPLDC + G and TLPLDC vaccines to compare gene expression between groups. Results 144 patients were randomized: 103 TLPLDC (47 TLPLDC/56 TLPLDC + G) and 41 placebo (19 placebo/22 placebo + G). Median follow-up was 27.0 months. Both 36-month DFS (55.8% vs. 24.4% vs. 30.0%, p = 0.010) and OS (94.2% vs. 69.8% vs. 70.9%, p = 0.024) were improved in TLPLDC compared to TLPLDC + G or placebo, respectively. When compared to TLPLDC + G vaccine, RNA-seq from TLPLDC vaccine showed upregulation of genes associated with DC maturation and downregulation of genes associated with DC suppression or immaturity. Conclusions Patients receiving TLPLDC vaccine without G-CSF had improved OS and DFS. Outcomes remained similar between patients receiving TLPLDC + G and placebo. Direct DC harvest without G-CSF had higher expression of genes linked to DC maturation, likely improving clinical efficacy.
更多
查看译文
关键词
Cancer vaccine,Dendritic cell,Immunotherapy,Melanoma,Personalized medicine
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要