A 24-epibrassinolide treatment and intercropping willow with alfalfa increase the efficiency of the phytoremediation of cadmium-contaminated soil

Science of The Total Environment(2023)

引用 2|浏览9
暂无评分
摘要
Cadmium contamination in agricultural soils threatens food security and human health, and that has caused widespread concern worldwide. Willow and alfalfa are widely used for the phytoremediation of cadmium (Cd)-contaminated soil, and willow NJU513 is the promising plant for remediating Cd-contaminated soil. In order to discuss the effect of intercropping willow NJU513 with alfalfa on the phytoremediation of Cd-contaminated soil, a pot-culture experiment was conducted in the greenhouse. The result showed that the phytoremediation of Cd-contaminated soil was enhanced by this intercropping because of the 25.90 % increase in the available Cd content. In order to increase the phytoremediation efficiency of Cd in the intercropping treatment, a 24-epibrassinolide (Brs) treatment was designed in the current study. The results showed that the phytoremediation of Cd-contaminated soil by willow and alfalfa improved following a Brs treatment because of the 16.32–74.15 % and 16.91–44.48 % increases in the plant biomass and available Cd content, respectively. Additionally, the extracted Cd by plants in the intercropping treatments with and without Brs was 0.56 and 0.31 mg pot−1, respectively. Transcriptome analyses of willow leaves revealed that Brs up-regulated the expression of genes related to calcium channel activity, calcium and zinc transmembrane transport, photosynthesis, catalase/antioxidant activity, glutathione metabolic processes and detoxification, phagosomes, and vacuoles, and that these upregulated genes promoted plant remediation efficiency and resistance to Cd stress. Brs promoted the phosphate ion transporter activity in willow leaves, which may have enhanced the solubilization of insoluble phosphate minerals by bacterial species (e.g., Vicinamibacterales, Bacillus, and Gaiella) to release Cd, ultimately leading to increased phytoremediation efficiency. In addition, plants with and without Brs treatments induced the bacteria-mediated transformation of available Cd to stable Cd. The study findings may be useful for improving the phytoremediation of Cd-contaminated paddy soil.
更多
查看译文
关键词
Phytoremediation,24-epibrassinolide,Plant physiology and biochemistry,Transcriptome,Bacteria
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要