谷歌浏览器插件
订阅小程序
在清言上使用

Self-Powered Resilient Porous Sensors with Thermoelectric Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) and Carbon Nanotubes for Sensitive Temperature and Pressure Dual-Mode Sensing.

ACS applied materials & interfaces(2022)

引用 14|浏览43
暂无评分
摘要
Portable and wearable dual-mode sensors that can simultaneously detect multiple stimuli are essential for emerging artificial intelligence applications, and most efforts are devoted to exploring pressure-sensing devices. It is still challenging to integrate temperature and pressure-sensing functions into one sensor without the requirement for complex decoupling processes. Herein, we develop a self-powered and multifunctional dual-mode sensor by dip-coating melamine sponge with both poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and carboxylated single-walled carbon nanotubes (CNTs). By integrating thermoelectric and conductive PEDOT:PSS/CNT components with the hydrophilic and resilient porous sponge, the resultant sensor is efficient in independently detecting temperature and pressure changes. The temperature and pressure stimuli can be independently converted to voltage and electrical resistance signals on the basis of the Seebeck and piezoresistive effects, respectively. The sensor exhibits a high Seebeck coefficient of 35.9 μV K-1 with a minimum temperature detection limit of 0.4 K and a pressure sensitivity of -3.35% kPa-1 with a minimum pressure detection limit of 4 Pa. Interestingly, the sensor can also be self-powered upon illumination. These multi-functionalities make the sensor a promising tool for applications in electronic skin, soft robots, solar energy conversion, and personal health monitoring.
更多
查看译文
关键词
pressure sensing,temperature sensing,piezoresistive effect,melamine sponges,Seebeck coefficien
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要