谷歌浏览器插件
订阅小程序
在清言上使用

Friability of Maize Shoot (zea Mays L.) in Relation to Cell Wall Composition and Physical Properties

Agriculture(2022)

引用 1|浏览14
暂无评分
摘要
Maize (Zea mays L.) is widely cultivated worldwide for food, feed, and fuel uses. Maize forage has become a valuable feed material, and there is much interest in characterizing its friability, as friability may shape feed value through its effect on ingestibility. The objective of this study was to characterize the friability of maize forage based on its milling behavior within a collection of inbred lines of maize. We proposed two friability indexes—Particle Size Reduction (PSR) and Energy Index—and evaluated their ability to discriminate 24 inbred maize lines differing in digestibility. Both the PSR Index and Energy Index effectively highlighted the variability in friability, which could vary by a factor of two regardless of index. These two friability indexes are based on two different milling technologies and therefore on different mechanical stresses inside the mills that could both inform on friability, but on different scales. In order to interpret the observed differences, we characterized the biomass at different scales, from phenotypic observation of the shoot to physical properties of the chopped maize, down to cell wall amount and composition. The friability assessed through these two indexes was mainly inter-correlated: the lower the milling energy, the more friable the fine particles produced. However, we also identified slight differences between the indexes that could be interpreted in relation to structural scale: while the Energy Index primarily informed friability at the cellular scale, the PSR Index also informed friability at the cell wall scale. This study provided key insight into the friability of maize forage and its relation to physical and fiber properties.
更多
查看译文
关键词
energy index,particle size reduction index,maize,friability,milling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要