In vivo Quantification of Neural Criticality and Complexity in Mouse Cortex and Striatum in a Model of Cocaine Abstinence

biorxiv(2022)

引用 0|浏览2
暂无评分
摘要
Self-organized criticality is a hallmark of complex dynamic systems at phase transitions. Systems that operate at or near criticality have large-scale fluctuations or “avalanches”, the frequency and duration power of which are best fit with a power law revealing them to be scale-free and fractal, and such power laws are ubiquitous. It is an attractive concept in neuroscience since spiking avalanches are exhibited by neural tissue, and may underpin how minuscule events could scale up to circuits and provide adaptive psychobiological function. Much is yet to be understood about criticality in vivo in the healthy brain and in disorders such as addiction, as drugs may alter the critical state’s “tuning” to generate drug seeking and dysphoria. Thus, here a novel toolset was developed to use neural avalanches and their self-similarity, rather than power law fit slope exponents as is canonically done, to quantify criticality in a previously collected high-density electrophysiological in vivo corticostriatal dataset from a mouse model of early cocaine abstinence. During behavioral quiescence, in the prefrontal cortex but not ventral striatum of cocaine-dosed mice, it was found that critical tuning is enhanced compared to drug-free controls. Additionally, an empirical biological demonstration of complexity’s theoretical correlation to criticality was shown in drug-free mice, was exponentially enhanced in drug-treated cortex, but was absent in the drug-treated striatum. As shown, quantifying criticality grants experimental support for the “critical brain hypothesis” and allows for statistical interpretation of inter-subject variability and development of further testable hypotheses in systems neuroscience. Significance Statement The “critical brain hypothesis” asserts neural networks are comparable to material in phase transitions at a critical point, their “avalanches” of system-wide spike bursts best seen in log-log plots of probability vs. avalanche size or duration, with slope following a scale-free or fractal power law. In discussing criticality, “critical tuning” is mentioned but quantification thereof left for later experimentation, despite being necessary for a scientific hypothesis. Presented are methods to quantify critical tuning through assessing similarity or fractalness among corticostriatal avalanches collected using high-density electrophysiology in cocaine-conditioned mice, along with an empirical in vivo confirmation of the mathematical concept that data complexity correlates with criticality. Interestingly, cocaine enhances critical tuning in cortex and aberrantly modifies complexity in a region-specific manner. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要