Biomechanical origins of proprioceptive maps in the Drosophila leg

biorxiv(2022)

引用 1|浏览12
暂无评分
摘要
Proprioception, the sense of body position and movement, is essential for effective motor control. Because proprioceptive sensory neurons are embedded in complex and dynamic tissues, it has been challenging to understand how they sense and encode mechanical stimuli. Here, we find that proprioceptor neurons in the Drosophila femur are organized into functional groups that are biomechanically specialized to detect features of tibia joint kinematics. The dendrites of position and vibration-tuned proprioceptors receive distinct mechanical signals via the arculum , an elegant mechanical structure that decomposes movement of the tibia joint into orthogonal components. The cell bodies of position-tuned proprioceptors form a goniotopic map of joint angle, whereas the dendrites of vibration-tuned proprioceptors form a tonotopic map of tibia vibration frequency. Our findings reveal biomechanical mechanisms that underlie proprioceptor feature selectivity and identify common organizational principles between proprioception and other topographically organized sensory systems. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要