谷歌浏览器插件
订阅小程序
在清言上使用

Authenticity Assessment of (E)-Cinnamic Acid, Vanillin, and Benzoic Acid from Sumatra Benzoin Balsam by Gas Chromatography Combustion/Pyrolysis Isotope Ratio Mass Spectrometry.

International journal of analytical chemistry(2022)

引用 1|浏览13
暂无评分
摘要
Authenticity assessment of (E)-cinnamic acid, vanillin, and benzoic acid from various origins (n = 26) was performed using gas chromatography-isotope ratio mass spectrometry coupled with combustion and pyrolysis mode (GC-C/P-IRMS). For that reason, the above three compounds (1–3) from synthetic, natural, and Sumatra benzoin balsam (laboratory prepared, adulterated, and commercial) were investigated. The δ13CV-PDB and δ2HV-SMOW values for compounds 1–3 from synthetic samples (S1–S5) ranging from −26.9 to −31.1‰ and 42 to 83‰, respectively, were clearly different from those of authentic samples (N1–N4, L1–L9) varying from −29.8 to −41.6‰ and −19 to −156‰. In adulteration verification testing, for compounds 1 and 3, both δ13CV-PDB and δ2HV-SMOW data of A1 (5.0% added) and A2 (2.5% added) except A3 (0.5% added) fell into the synthetic region, whereas for compound 2, the δ2HV-SMOW data of adulterated samples (A1–A3) fell into the synthetic region, and even the lowest adulterated sample A3 is no exception. With this conclusion, some commercial Sumatra benzoin balsam samples were identified to be adulterated with synthetic 1 (C1, C3, and C5) and synthetic 2 (C3, C4, and C5) but not with synthetic 3. GC-C/P-IRMS allowed clear-cut differentiation of the synthetic and natural origin of 1, 2, and 3 and definite identification of whether a Sumatra benzoin balsam was adulterated or not.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要