Solving a Class of Fredholm Integral Equations of the First Kind Via Wasserstein Gradient Flows
Stochastic processes and their applications(2024)
Abstract
Solving Fredholm equations of the first kind is crucial in many areas of the applied sciences. In this work we consider integral equations featuring kernels which may be expressed as scalar multiples of conservative (i.e. Markov) kernels and we adopt a variational point of view by considering a minimization problem in the space of probability measures with an entropic regularization. Contrary to classical approaches which discretize the domain of the solutions, we introduce an algorithm to asymptotically sample from the unique solution of the regularized minimization problem. As a result our estimators do not depend on any underlying grid and have better scalability properties than most existing methods. Our algorithm is based on a particle approximation of the solution of a McKean-Vlasov stochastic differential equation associated with the Wasserstein gradient flow of our variational formulation. We prove the convergence towards a minimizer and provide practical guidelines for its numerical implementation. Finally, our method is compared with other approaches on several examples including density deconvolution and epidemiology.
MoreTranslated text
Key words
Interacting particle systems,Inverse problems,McKean-Vlasov SDEs
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined