Glucogallin Attenuates the LPS-Induced Signaling in Macrophages and Protects Mice against Sepsis

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES(2022)

引用 3|浏览0
暂无评分
摘要
The anti-oxidant and anti-inflammatory effect of beta-glucogallin (BGG), a plant-derived natural product, was evaluated in both in vitro and in vivo studies. For the in vitro study, the ability of BGG pre-treatment to quench LPS-induced effects compared to LPS alone in macrophages was investigated. It was found that BGG pre-treatment showed a significant decrease in ROS, NO, superoxide, and pro-inflammatory cytokines (TNF-alpha, IL-4, IL-17, IL-1 beta, and IL-6) and increased reduced glutathione coupled with the restoration of mitochondrial membrane potential. Gene profiling and further validation by qPCR showed that BGG pre-treatment downregulated the LPS-induced expression of c-Fos, Fas, MMP-9, iNOS, COX-2, MyD88, TRIF, TRAF6, TRAM, c-JUN, and NF-kappa B. We observed that BGG pre-treatment reduced nuclear translocation of LPS-activated NF-kappa B and thus reduced the subsequent expressions of NLRP3 and IL-1 beta, indicating the ability of BGG to inhibit inflammasome formation. Molecular docking studies showed that BGG could bind at the active site of TLR4. Finally, in the LPS-driven sepsis mouse model, we showed that pre-treatment with BGG sustained toxic shock, as evident from their 100% survival. Our study clearly showed the therapeutic potential of BGG in toxic shock syndrome.
更多
查看译文
关键词
beta-glucogallin,lipopolysaccharide,macrophages,gene expression profiling,anti-inflammatory,sepsis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要