From an antiferromagnetic insulator to a strongly correlated metal in square-lattice MCl 2 (pyrazine) 2 coordination solids

Nature Communications(2022)

引用 4|浏览23
暂无评分
摘要
Electronic synergy between metal ions and organic linkers is a key to engineering molecule-based materials with a high electrical conductivity and, ultimately, metallicity. To enhance conductivity in metal-organic solids, chemists aim to bring the electrochemical potentials of the constituent metal ions and bridging organic ligands closer in a quest to obtain metal- d and ligand- π admixed frontier bands. Herein, we demonstrate the critical role of the metal ion in tuning the electronic ground state of such materials. While VCl 2 (pyrazine) 2 is an electrical insulator, TiCl 2 (pyrazine) 2 displays the highest room-temperature electronic conductivity (5.3 S cm –1 ) for any metal-organic solid involving octahedrally coordinated metal ions. Notably, TiCl 2 (pyrazine) 2 exhibits Pauli paramagnetism consistent with the specific heat, supporting the existence of a Fermi liquid state (i.e., a correlated metal). This result widens perspectives for designing molecule-based systems with strong metal-ligand covalency and electronic correlations.
更多
查看译文
关键词
Coordination chemistry,Inorganic chemistry,Magnetic materials,Magnetic properties and materials,Metal–organic frameworks,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要