Impact of injection temperature and formation slope on CO2 storage capacity and form in the Ordos Basin, China

Environmental science and pollution research international(2022)

引用 1|浏览0
暂无评分
摘要
Carbon dioxide (CO2) storage capacity is the main criterion for assessing CO2 geological storage. Based on actual data from the Shiqianfeng formation in the Ordos Basin, three-dimensional (3D) models were built using the TOUGHVISUAL visualization software and simulated using the TOUGH2 integral finite difference modeling code with the ECO2N fluid property module to explore the impact of formation attributes (formation slope) and controllable factors (injection temperature) on CO2 storage capacity. A total of 16 schemes were designed, with four injection temperatures (24 ℃, 31 ℃, 38 ℃, and 45 ℃) and four formation slopes (0°, 5°, 10°, and 15°). Simulation results showed that the injection temperature and formation slope both had a significant influence on CO2 storage capacity. The impact of injection temperature on the total storage amount was more obvious than that of the impact of formation slope. A higher injection temperature resulted in a greater total storage amount. Increasing the formation slope and injection temperature increased the gas-phase, dissolved-phase, and total CO2 storage amounts in the upper left section of the injection well, but decreased them in the lower right part of the injection well. The impact of formation slope on the conversion rate from gas-phase CO2 to dissolved-phase CO2 was more obvious than the impact of injection temperature. A steeper formation slope resulted in a higher conversion rate. A smaller formation slope and a higher injection temperature should be selected to store CO2.
更多
查看译文
关键词
Slope, Injection temperature, Storage capacity, Ordos, Numerical simulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要