H3F3A K27M Mutation Promotes the Infiltrative Growth of High-Grade Glioma in Adults by Activating beta-Catenin/USP1 Signaling

CANCERS(2022)

引用 0|浏览3
暂无评分
摘要
Simple Summary Gliomas is a primary type of tumor in the central nervous system. High-grade glioma is a malignant cancerous disease and grows rapidly. This study reports the expression of H3.3K27M in high-grade glioma tissues and the association with malignant glioma cell behavior. Moreover, the results suggested that a high expression of H3.3K27M promotes the migration and invasion of glioma cells, leading to a poor prognosis by promoting the infiltration of glioma through aggravating aberrant activation of beta-catenin signaling-driven pathway. H3F3A K27M (H3.3K27M) is a newly identified molecular pathological marker in glioma and is strongly correlated with the malignancy of diffuse intrinsic pontine glioma (DIPG). In recent years, accumulating evidence has revealed that other types of glioma also contain the H3.3K27M mutation. However, the role of H3.3K27M in high-grade adult glioma, the most malignant glioma, has not been investigated. In this study, we focused on exploring the expression and function of H3.3K27M in high-grade glioma in adults. We found that H3.3K27M was highly expressed at high levels in some high-grade glioma tissues. Then, we introduced H3.3K27M into H3.3 wild-type glioma cells, U87 cells and LN229 cells. We found that H3.3K27M did not affect the growth of glioma cells in vitro and in vivo; however, the survival of mice with transplanted tumors was significantly reduced. Further investigation revealed that H3.3K27M expression mainly promoted the migration and invasion of glioma cells. Moreover, we confirmed that H3.3K27M overexpression increased the levels of the beta-catenin and p-beta-catenin (Ser675) proteins, the ubiquitin-specific protease 1 (USP1) mRNA and protein levels, and the enhancer of zeste homolog 2 (EZH2) protein level. In addition, the beta-catenin inhibitor XAV-939 significantly attenuated the upregulation of the aforementioned proteins and inhibited the increased migration and invasion caused by the H3.3K27M mutation. Overall, the H3.3K27M mutation in high-grade glioma is a potential biomarker for poor prognosis mainly due to the infiltration of glioma cells that is at least partially mediated by the beta-catenin/USP1/EZH2 pathway.
更多
查看译文
关键词
H3,glioma,infiltration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要