谷歌浏览器插件
订阅小程序
在清言上使用

Responses of Bryosphere Fauna to Drought Across a Boreal Forest Chronosequence

Oecologia(2022)

引用 1|浏览4
暂无评分
摘要
Projected changes in precipitation regimes can greatly impact soil biota, which in turn alters key ecosystem functions. In moss-dominated ecosystems, the bryosphere (i.e., the ground moss layer including live and senesced moss) plays a key role in carbon and nutrient cycling, and it hosts high abundances of microfauna (i.e., nematodes and tardigrades) and mesofauna (i.e., mites and springtails). However, we know very little about how bryosphere fauna responds to precipitation, and whether this response changes across environmental gradients. Here, we used a mesocosm experiment to study the effect of volume and frequency of precipitation on the abundance and community composition of functional groups of bryosphere fauna. Hylocomium splendens bryospheres were sampled from a long-term post-fire boreal forest chronosequence in northern Sweden which varies greatly in environmental conditions. We found that reduced precipitation promoted the abundance of total microfauna and of total mesofauna, but impaired predaceous/omnivorous nematodes, and springtails. Generally, bryosphere fauna responded more strongly to precipitation volume than to precipitation frequency. For some faunal functional groups, the effects of precipitation frequency were stronger at reduced precipitation volumes. Context-dependency effects were found for microfauna only: microfauna was more sensitive to precipitation in late-successional forests (i.e., those with lower productivity and soil nutrient availability) than in earlier-successional forests. Our results also suggest that drought-induced changes in trophic interactions and food resources in the bryosphere may increase faunal abundance. Consequently, drier bryospheres that may result from climate change could promote carbon and nutrient turnover from fauna activity, especially in older, less productive forests.
更多
查看译文
关键词
Climate change,Mites,Moss,Nematodes,Precipitation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要