谷歌浏览器插件
订阅小程序
在清言上使用

Identifying the Impact of Fe Nanoparticles Encapsulated by Nitrogen-Doped Carbon to Fe Single Atom Sites for Boosting Oxygen Reduction Reaction Toward Zn-Air Batteries

Chemical engineering journal(2023)

引用 11|浏览15
暂无评分
摘要
Herein, a proof-of-concept study on the evaluation of Fe nanoparticles (Fe NPs) encapsulated by nitrogen-doped carbon to Fe single atoms (Fe SAs) for boosting the oxygen reduction reaction (ORR) catalytic activity toward Znair batteries was reported. Specifically, unlike Fe SAs encapsulated by nitrogen-doped carbon (Fe SAs@NC), the Fe SAs and Fe NPs co-embedded in nitrogen-doped carbon (Fe SAs/NPs@NC) derived from a pyrolysis and acid dissolution protocols exhibits excellent ORR performance with good stability and remarkable methanol tolerance in alkaline solutions. Combining a series of experimental analyses, the strong interaction between the atomically dispersed Fe-Nx and adjacent Fe NPs in altering the electronic structure of isolated Fe-Nx sites could weaken the binding energies of the ORR intermediates on Fe SAs/NPs@NC, resulting in an enhanced electrocatalytic kinetics than Fe SAs@NC and Pt/C catalysts. This strategy not only offers a new way for synthesis highly efficient Fe-N/C catalysts toward ORR, but also provides the new insights into the understanding of the mechanism of adjacent Fe NPs encapsulated by nitrogen-doped carbon to Fe SAs sites.
更多
查看译文
关键词
Fe nanoparticles,Fe single atoms,Electrocatalysts,Oxygen reduction reaction,Zn-air batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要