Biological N fixation but not mineral N fertilization enhances the accumulation of N in peanut soil in maize/peanut intercropping system

Journal of Agriculture and Food Research(2022)

引用 3|浏览12
暂无评分
摘要
Legume/cereal intercropping has the potential to maximize the use of resources to raise yields due to enhanced nitrogen (N) fixation by legume root nodules, while high N fertilization may inhibit the nodulation of legume. However, whether legume/cereal intercropping can promote the accumulation of soil N storage with N fertilization and its underlying mechanism are less clear. Here, we evaluated the long-term (5 years) effects of maize/peanut intercropping and mineral N fertilization on peanut soil total N content and soil N cycling functional genes. The experiment includes two planting patterns (peanut maize intercropping and peanut monocropping) with three N fertilization rates (0, 150, and 300 kg N ha−1). Intercropping increased soil total N content (STN) by average 18.2%, and the positive effect of intercropping on STN decreased with N application rate. Highest N application decreased the nodule fresh weight (NFW) by 64.3% and 46.0% in intercropping and monocropping system, respectively. However, intercropping has no effect on NFW. Intercropping increased the nifH gene abundance by average 26.5%. SEM analysis indicated that NFW and nifH gene abundance combined can explain 46% of the variance of STN. Our results indicate that biological N fixation but not mineral N fertilization enhances the accumulation of N in soil planted with peanut in maize/peanut intercropping system.
更多
查看译文
关键词
Soil total nitrogen,Intercropping,Functional gene,Nitrogen fixation,Nodulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要