Synergistic Effect of Atmospheric Boundary Layer and Regional Transport on Aggravating Air Pollution in the Twain-Hu Basin: A Case Study

REMOTE SENSING(2022)

引用 1|浏览3
暂无评分
摘要
The impact of structural variations in the atmospheric boundary layer (ABL) during the regional transport of air pollutants on its local pollution changes deserves attention. Based on multi-source ABL detection and numerical simulation of air pollutants over the Twain-Hu Basin (THB) during 4-6 January 2019, the mechanism of the rapid growth of atmospheric pollutant concentrations in Xianning by the synergistic effect of regional transport and ABL evolution is explored, and the main conclusions are obtained as follows. The vertically stratified atmosphere is noticeable at nighttime, and the heavy humidity of near-surface fog within the stable boundary layer (SBL) promoted the generation and cumulative growth of secondary PM2.5 components during the pollution formation stage. The horizontal transport characteristics of atmospheric pollutant concentration peak were observed in the residual layer (RL) of 500-600 m. At the pollution maintenance stage, the convective boundary layer (CBL) developed during the daytime, and northerly wind transported high-concentration pollutants from the north to the THB. Under the combined action of horizontal transport and turbulent mixing, the high-concentration atmospheric pollutants in the mixing layer (ML) from the ground to the 500 m height were mixed uniformly and maintained accumulation growth. The next day, the strong vertical turbulent mixing caused the downward transport of high-concentration pollutants in the RL during nighttime due to the development of the CBL again, resulting in a doubling of near-surface pollutant concentration in a short time. With the development of ABL turbulence, local pollution dissipated rapidly without the continuous input of pollutants from external regions. This study emphasizes the importance of multi-scale processes impact on pollution variation, that is, regional transport of atmospheric pollutants at the CBL development stage for the rapid growth of PM2.5 concentration in the ML.
更多
查看译文
关键词
PM,(2 5),regional transport,turbulent mixing,UAV
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要