Thermal degradation and combustion properties of most popular synthetic biodegradable polymers.

Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA(2023)

引用 3|浏览27
暂无评分
摘要
Various products made from biodegradable polymers have been increasing rapidly in the market since the use of non-biodegradable materials has been banned, particularly for the disabled packaging materials. Burning remains the most popular method that is increasingly used in treating city wastes. The impact of these polymers on environmental during thermal degradation and combustion is an important issue for city waste management. In this work, the thermal degradation and combustion behaviours of the most popular synthetic biodegradable polymers in the market, poly(lactide acid) (PLA), poly(e-caprolactone) (PCL), poly(butylene succinate) (PBS), poly(butylene adipate-co-terephthalate) (PBAT) and polyhydroxyalkenoates (PHA), are investigated. Both isothermal and non-isothermal thermal decomposition in oxygen and nitrogen environment were studied using thermogravimetric analysis combining with differential scanning calorimeter and coupled with Fourier transform infrared spectroscopy and gas chromatograph/mass spectroscopy. The combustion behaviour was investigated by a combustion colorimeter. The study results show that thermal degradation temperatures are PCL > PBS > PLA > PBAT > PHA. The thermal decomposition of all the polyesters started from scission reaction (-elimination), and then a stereoselective -elimination, which resulted in the formation of -crotonic acid and its oligomers. They all decomposed into CO and water in excess oxygen environment above 800°C. Various chemical products with smaller molecules were detected under oxygen-free conditions, including oligomers and unsaturated carboxylic acid. The order of the total heat release of the materials from high to low is as follows: PHA > PCL > PBAT > PBS > PLA. The combustion values of these polyesters are lower than those of polyolefins; thus, they will not damage furnace used currently. The results provide some important and useful data for managing these new city waste.
更多
查看译文
关键词
Thermal degradation,biodegradable polymer,combustion,pyrolysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要