Range-resolved detection of boundary layer stable water vapor isotopologues using a ground-based 1.98 mu m differential absorption LIDAR

Optics Express(2022)

引用 0|浏览12
暂无评分
摘要
This paper presents a first demonstration of range-resolved differential absorption LIDAR (DIAL) measurements of the water vapor main isotopologue H216O and the less abundant semi-heavy water isotopologue HD16O with the aim of determining the isotopic ratio. The presented Water Vapor and Isotope Lidar (WaVIL) instrument is based on a parametric laser source emitting nanosecond pulses at 1.98 mu m and a direct-detection receiver utilizing a commercial InGaAs PIN photodiode. Vertical profiles of H216O and HD16O were acquired in the planetary boundary layer in the suburban Paris region up to a range of 1.5 km. For time averaging over 25 min, the achieved precision in the retrieved water vapor mixing ratio is 0.1 g kg-1 (2.5% relative error) at 0.4 km above ground level (a.g.l.) and 0.6 g kg-1 (20%) at 1 km a.g.l. for 150 m range bins along the LIDAR line of sight. For HD16O, weaker absorption has to be balanced with coarser vertical resolution (600 m range bins) in order to achieve similar relative precision. From the DIAL measurements of H216O and HD16O, the isotopic abundance delta D was estimated as -51%0 at 0.4 km above the ground and -119%0 in the upper part of the boundary layer at 1.3 km a.g.l. Random and systematic errors are discussed in the form of an error budget, which shows that further instrumental improvements are required on the challenging path towards DIAL-profiling of the isotopic abundance with range resolution and precision suitable for water cycle studies.
更多
查看译文
关键词
differential absorption lidar,stable water vapor,boundary layer,range-resolved,ground-based
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要