谷歌浏览器插件
订阅小程序
在清言上使用

Strategies to Control Ph in the Dark Fermentation of Sugarcane Vinasse: Impacts on Sulfate Reduction, Biohydrogen Production and Metabolite Distribution.

Social Science Research Network(2022)

引用 17|浏览27
暂无评分
摘要
pH is notably known as the main variable defining distinct metabolic pathways during sugarcane vinasse dark fermentation. However, different alkalinizing (e.g. sodium bicarbonate; NaHCO3) and/or neutralizing (e.g. so-dium hydroxide; NaOH) approaches were never directly compared to understand the associated impacts on metabolite profiles. Three anaerobic structured-bed reactors (AnSTBR) were operated in parallel and subjected to equivalent operational parameters, except for the pH control: an acidogenic-sulfidogenic (R1; NaOH + NaHCO3) designed to remove sulfur compounds (sulfate and sulfide), a hydrogenogenic (R2; NaOH) aimed to optimize biohydrogen (bioH2) production, and a strictly fermentative system without pH adjustment (R3) to mainly evaluate lactic acid (HLa) production and other soluble metabolites. NaHCO3 dosing triggered advantages not only for sulfate reduction (up to 56%), but also to enhance the stripping of sulfide to the gas phase (75-96% of the theoretical sulfide produced) by the high and constant biogas flow resulting from the CO2 released during NaHCO3 dissociation. Meanwhile, molasses-based vinasse presented higher potential for bioH2 (up to 4545 mL-H2 L-1 d-1) and HLa (up to 4800 mg L-1) production by butyric-type and capnophilic lactic fermentation pathways. Finally, heterolactic fermentation was the main metabolic route established when no pH control was provided (R3), as indicated by the high production of both HLa (up to 4315 mg L-1) and ethanol (1987 mg L-1). Hence, one single substrate (from which one single source of inoculum was originated) offers a wide range of metabolic possibilities to be exploited, providing substantial versatility to the application of anaerobic digestion in sugarcane biorefineries.
更多
查看译文
关键词
Thermophilic dark fermentation,pH control,Acidogenic-sulfidogenic process,Biohydrogen production,Lactic acid production
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要