Nanoparticle contact printing with interfacial engineering for deterministic integration into functional structures

Science Advances(2022)

引用 0|浏览17
暂无评分
摘要
Deterministic, pristine, and scalable integration of individual nanoparticles onto arbitrary surfaces is an ongoing challenge, yet essential for harnessing their unique properties for functional nanoscale devices. To address this challenge, we present a versatile technique where spatially arranged nanoparticles assembled in a topographical template are printed onto diverse surfaces, through a single contact-and-release step, with >95% transfer yield and <50-nanometer placement accuracy. Through engineering of interfacial interactions, our approach uniquely promotes high-yield transfer of individual particles without needing solvents, surface treatments, and polymer sacrificial layers, which are conventionally inevitable. By avoiding these mediation steps, surfaces can remain damage and contamination free and accessible to integrate into functional structures. We demonstrate this in a particle-on-mirror model system, where >2000 precisely defined nanocavities display a consistent plasmonic response with minimized interstructure variability. Through fabricating arrays of emitter-coupled nanocavities, we further highlight the integration opportunities offered by our contact printing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要