Chrome Extension
WeChat Mini Program
Use on ChatGLM

Language Control Diffusion: Efficiently Scaling Through Space, Time, and Tasks

ICLR 2024(2024)

Cited 0|Views31
No score
Abstract
Training generalist agents is difficult across several axes, requiring us to deal with high-dimensional inputs (space), long horizons (time), and generalization to novel tasks. Recent advances with architectures have allowed for improved scaling along one or two of these axes, but are still computationally prohibitive to use. In this paper, we propose to address all three axes by leveraging Language to Control Diffusion models as a hierarchical planner conditioned on language (LCD). We effectively and efficiently scale diffusion models for planning in extended temporal, state, and task dimensions to tackle long horizon control problems conditioned on natural language instructions, as a step towards generalist agents. Comparing LCD with other state-of-the-art models on the CALVIN language benchmark finds that LCD outperforms other SOTA methods in multi-task success rates, whilst improving inference speed over other comparable diffusion models by 3.3x~15x. We show that LCD can successfully leverage the unique strength of diffusion models to produce coherent long range plans while addressing their weakness in generating low-level details and control.
More
Translated text
Key words
planning,diffusion,language,RL,reinforcement
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined