Single optical microfiber enabled tactile sensor for simultaneous temperature and pressure measurement

PHOTONICS RESEARCH(2022)

引用 40|浏览0
暂无评分
摘要
The ability to sense heat and touch is essential for healthcare, robotics, and human -machine interfaces. By taking advantage of the engineerable waveguiding properties, we design and fabricate a flexible optical microfiber sensor for simultaneous temperature and pressure measurement based on theoretical calculation. The sensor exhibits a high temperature sensitivity of 1.2 nm/degrees C by measuring the shift of a high-order mode cutoff wavelength in the short-wavelength range. In the case of pressure sensing, the sensor shows a sensitivity of 4.5% per kilopascal with a fast temporal frequency response of 1000 Hz owing to the strong evanescent wave guided outside the microfiber. The cross talk is negligible because the temperature and pressure signals are measured at different wavelengths based on different mechanisms. The properties of fast temporal response, high temperature, and pressure sensitivity enable the sensor for real-time skin temperature and wrist pulse measurements, which is critical to the accurate analysis of pulse waveforms. We believe the sensor will have great potential in wearable optical devices ranging from healthcare to humanoid robots. (c) 2022 Chinese Laser Press
更多
查看译文
关键词
single optical microfiber,sensor,simultaneous temperature
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要