Macrophage In Vitro and In Vivo Tracking via Anchored Microcapsules.

ACS applied materials & interfaces(2022)

引用 4|浏览9
暂无评分
摘要
A new promising trend in personalized medicine is the use of autologous cells (macrophages or stem cells) for cell-based therapy and also as a "Trojan horse" for targeted delivery of a drug carrier. The natural ability of macrophages for chemotaxis allows them to deliver cargo to the damaged area, significantly reducing side effects on healthy organ tissues. Therefore, it is important to develop tools to track their behavior in the organism. While labeled containers can serve as anchored tags for imaging macrophages , they can affect the properties and functions of macrophages. This work demonstrates that 3 μm sized capsules based on biocompatible polyelectrolytes and fluorescently labeled with both Cy7 and RITC dyes do not affect cell functionalization , such as viability, proliferation, and movement of transformed monocyte/macrophage-like cells (RAW 264.7) and primary bone marrow derived macrophages (BMDM) at maximal loading of five capsules per cell. In addition, capsules allowed fluorescent detection of loaded cells 24 h after the tail vein injection and visualization of microcapsule-laden macrophages using confocal microscopy. We have delivered about 62.5% of injected BMDM containing 12.5 million capsules with 3.75 μg of high-molecular-weight cargo (0.3 pg/capsule) to the liver. Our results demonstrate that 3 μm polyelectrolyte fluorescently labeled microcapsules can be used for safe macrophage loading, allowing cell tracking and drug delivery, which will facilitate development of macrophage-based cell therapy protocols.
更多
查看译文
关键词
cell tracking,fluorescent label,macrophage-mediated drug delivery system,macrophages,microcapsule-laden macrophages,microcapsules,nanomaterials
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要