Irisin-pretreated BMMSCs Secrete Exosomes to Alleviate Cardiomyocytes Pyroptosis and Oxidative Stress to Hypoxia/reoxygenation Injury.

Current stem cell research & therapy(2023)

引用 2|浏览5
暂无评分
摘要
BACKGROUND:The cardiomyocytes pyroptosis and bone marrow-derived mesenchymal stem cells have been well considered as novel therapies to attenuate myocardial ischemia/reperfusion injury, however, the relationship has not yet been determined. OBJECTIVE:We aim to evaluate whether pre-treatment bone marrow-derived mesenchymal stem cells protect against myocardial ischemia/reperfusion injury by repressing cardiomyocytes pyroptosis, as well as to further elucidate the potential mechanisms. METHODS:Cardiomyocytes were treated with hypoxia, followed by reoxygenation to mimic myocardial ischemia/reperfusion injury. Pre-treatment bone marrow-derived mesenchymal stem cells or their exosomes were co-cultured with cardiomyocytes following hypoxia/reoxygenation. Cell Counting Kit-8 assay was used to determine cell viability. Reactive oxygen species production was determined by dihydroethidium stain. Enzyme-linked immunosorbent assays were used to detect IL-1β and IL-18. RESULTS:We observed that Irisin pre-treatment bone marrow-derived mesenchymal stem cells protected cardiomyocytes against hypoxia/reoxygenation-induced injuries. The underlying molecular mechanism was further identified. Irisin-BMMSCs were found to secrete exosomes, which repressed cardiomyocytes pyroptosis and oxidative stress response by suppressing NLRP3 under hypoxia/reoxygenation conditions. CONCLUSION:Based on our findings, we revealed a promising target that exosomes derived from bone marrow-derived mesenchymal stem cells with Irisin treatment to elevate the therapeutic benefits for hypoxia/ reoxygenation injury.
更多
查看译文
关键词
Bone marrow-derived mesenchymal stem cells,Exosomes,Hypoxia/reoxygenation,Oxidative stress response,Pyroptosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要