Communication-Aware Energy Consumption Model in Heterogeneous Computing Systems.
Computer journal(2022)
Abstract
Large heterogeneous computing systems are composed of conventional central processing units and graphics processing units (GPUs) where communication plays a crucial role for system performance. This paper presents an energy consumption analytical model in terms of communication perception for the communication-computing pipeline characterization of discrete GPUs systems. We propose a dynamically adaptive energy-efficient task assignment approach, which harnesses particle swarm optimization. Static energy optimization is addressed by optimal task partition granularity. The experimental results demonstrate that the communication-based energy optimization algorithms can be more energy-saving than those without communication consideration. For some application benchmarks, the energy consumption can be saved by up to 31%. This implies the potential that the energy-saving optimization methods can be incorporated in system engineering processes.
MoreTranslated text
Key words
particle swarm optimization,communication perception,communication-computing pipeline,energy effective scheduling,heterogeneous computing systems
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined