The relative sizes of nuclei in the oculomotor complex vary by order and behaviour in birds

Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology(2022)

引用 0|浏览3
暂无评分
摘要
Eye movements are a critical component of visually guided behaviours, allowing organisms to scan the environment and bring stimuli of interest to regions of acuity in the retina. Although the control and modulation of eye movements by cranial nerve nuclei are highly conserved across vertebrates, species variation in visually guided behaviour and eye morphology could lead to variation in the size of oculomotor nuclei. Here, we test for differences in the size and neuron numbers of the oculomotor nuclei among birds that vary in behaviour and eye morphology. Using unbiased stereology, we measured the volumes and numbers of neurons of the oculomotor (nIII), trochlear (nIV), abducens (nVI), and Edinger-Westphal (EW) nuclei across 71 bird species and analysed these with phylogeny-informed statistics. Owls had relatively smaller nIII, nIV, nVI and EW nuclei than other birds, which reflects their limited degrees of eye movements. In contrast, nVI was relatively larger in falcons and hawks, likely reflecting how these predatory species must shift focus between the central and temporal foveae during foraging and prey capture. Unexpectedly, songbirds had an enlarged EW and relatively more nVI neurons, which might reflect accommodation and horizontal eye movements. Finally, the one merganser we measured also has an enlarged EW, which is associated with the high accommodative power needed for pursuit diving. Overall, these differences reflect species and clade level variation in behaviour, but more data are needed on eye movements in birds across species to better understand the relationships among behaviour, retinal anatomy, and brain anatomy.
更多
查看译文
关键词
Abducens,Allometry,Edinger-Westphal,Eye movement,Oculomotor,Trochlear
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要