Ultrafast-laser-treated poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) electrodes with enhanced conductivity and transparency for semitransparent perovskite solar cells

FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING(2022)

引用 2|浏览3
暂无评分
摘要
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is an important organic electrode for solution-processed low-cost electronic devices. However, it requires doping and post-solvent treatment to improve its conductivity, and the chemicals used for such treatments may affect the device fabrication process. In this study, we developed a novel route for exploiting ultrafast lasers (femtosecond and picosecond laser) to simultaneously enhance the conductivity and transparency of PEDOT:PSS films and fabricate patterned solution-processed electrodes for electronic devices. The conductivity of the PEDOT:PSS film was improved by three orders of magnitude (from 3.1 to 1024 S·cm –1 ), and high transparency of up to 88.5% (average visible transmittance, AVT) was achieved. Raman and depth-profiling X-ray photoelectron spectroscopy revealed that the oxidation level of PEDOT was enhanced, thereby increasing the carrier concentration. The surface PSS content also decreased, which is beneficial to the carrier mobility, resulting in significantly enhanced electrical conductivity. Further, we fabricated semitransparent perovskite solar cells using the as-made PEDOT:PSS as the transparent top electrodes, and a power conversion efficiency of 7.39% was achieved with 22.63% AVT. Thus, the proposed route for synthesizing conductive and transparent electrodes is promising for vacuum and doping-free electronics.
更多
查看译文
关键词
PEDOT:PSS,ultrafast laser,transparent electrode,ST-PSCs,patterning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要