Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD

CHINESE PHYSICS B(2022)

引用 0|浏览4
暂无评分
摘要
This work proposed to change the structure of the sample susceptor of the microwave plasma chemical vapor deposition (MPCVD) reaction chamber, that is, to introduce a small hole in the center of the susceptor to study its suppression effect on the incorporation of residual nitrogen in the MPCVD diamond film. By using COMSOL multiphysics software simulation, the plasma characteristics and the concentration of chemical reactants in the cylindrical cavity of MPCVD system were studied, including electric field intensity, electron number density, electron temperature, the concentrations of atomic hydrogen, methyl, and nitrogenous substances, etc. After introducing a small hole in the center of the molybdenum support susceptor, we found that no significant changes were found in the center area of the plasma, but the electron state in the plasma changed greatly on the surface above the susceptor. The electron number density was reduced by about 40%, while the electron temperature was reduced by about 0.02 eV, and the concentration of atomic nitrogen was decreased by about an order of magnitude. Moreover, we found that if a specific lower microwave input power is used, and a susceptor structure without the small hole is introduced, the change results similar to those in the surface area of the susceptor will be obtained, but the spatial distribution of electromagnetic field and reactant concentration will be changed.
更多
查看译文
关键词
plasma simulation, diamond, microwave plasma chemical vapor deposition (MPCVD), residual nitrogen
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要