Imaging Cerebral Energy Metabolism in Healthy Infants

Oxygen Transport to Tissue XLIII(2022)

引用 7|浏览7
暂无评分
摘要
Broadband near-infrared spectroscopy (bNIRS) has the potential to provide non-invasive measures of cerebral haemodynamic changes alongside changes in cellular oxygen utilisation through the measurement of mitochondrial enzyme cytochrome-c-oxidase (oxCCO). It therefore provides the opportunity to explore brain function and specialisation, which remains largely unexplored in infancy. We used bNIRS to measure changes in haemodynamics and changes in oxCCO in 4-to-7-month-old infants over the occipital and right temporal and parietal cortices in response to social and non-social visual and auditory stimuli. Changes in concentration of oxygenated-haemoglobin (Δ[HbO2]), deoxygenated haemoglobin (Δ[HHb]) and change in the oxidation state of oxCCO (Δ[oxCCO]) were calculated using changes in attenuation of light at 120 wavelengths between 780 and900 nm, using the UCLn algorithm. For 4 infants, the attenuation changes in a subset of wavelengths were used to perform image reconstruction, in an age-matched infant model, for channels over the right parietal and temporal cortices, using a multispectral approach which allows direct reconstruction of concentration change data. The volumetric reconstructed images were mapped onto the cortical surface to visualise the reconstructed changes in concentration of HbO2 and HHb and changes in metabolism for both social and non-social stimuli. Spatially localised activation was observed for Δ[oxCCO] and Δ[HbO2] over the temporo-parietal region, in response to the social stimulus. This study provides the first reconstructed images of changes in metabolism in healthy, awake infants.
更多
查看译文
关键词
NIRS, Cytochrome oxidase, Cerebral haemodynamics, Oxyhaemoglobin, Deoxyhaemoglobin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要