In Situ Grown Hierarchical Electrospun Nanofiber Skeletons with Embedded Vanadium Nitride Nanograins for Ultra‐Fast and Super‐Long Cycle Life Aqueous Zn‐Ion Batteries

Advanced Energy Materials(2022)

引用 9|浏览6
暂无评分
摘要
The issues of inadequate cycle stability and energy density for aqueous zinc-ion batteries (ZIBs) can be partly addressed by controlling cathode dissolution and structural deterioration and improving electronic conductivity and reaction kinetics. Herein, vanadium nitride embedded nitrogen-doped carbon nanofiber (VN/N-CNFs) composites with 3D self-supported skeletons and hierarchical structures are developed by an electrospinning technique and thermal treatments. The introduction of vanadium-based metal organic frameworks (V-MOFs) contributes to in situ hierarchical growth of whisker-like secondary structures and homogeneous distribution of 0D active VN nanograins into both trunk nanofibers and branched nano-whiskers. The protective and conductive carbon matrix derived from functional V-MOFs and electrospun nanofibers not only prevents the self-aggregation of highly-active 0D nanograins, but also provides encapsulating shells to suppress the vanadium dissolution by controlling the direct contact with aqueous electrolytes. Furthermore, the flexible and free-standing 3D electrospun VN/N-CNFs skeletons contribute high structural integrity for the aqueous ZIBs, exhibiting an ultra-long cycle lifespan with reversible capacity of 482 mAh g(-1) after cycling at 50 A g(-1) for 30,000 cycles and a super-high rate capability with discharge capacity of 297 mAh g(-1) at high rate of 100 A g(-1). This research sheds light upon a pathway toward designing superior ZIBs.
更多
查看译文
关键词
electrospinning,hierarchical,metal organic frameworks,self-support,vanadium nitride,zinc-ion batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要