谷歌浏览器插件
订阅小程序
在清言上使用

Thermal and mechanical THz modulation of flexible all-dielectric metamaterial

Optics express(2023)

引用 0|浏览11
暂无评分
摘要
The implementation of Terahertz (THz) modulation is critical for applications in high-speed wireless communications, security screening and so on. Therefore, it is particularly significant to obtain THz wave modulation devices with stable and flexible performance, easy manipulation of the modulation method, and multi-functionality. Here, we propose a flexible all-dielectric metamaterial by embedding zirconia (ZrO2) microspheres into a vanadium dioxide/polydimethylsiloxane (VO2/PDMS) composite, which can achieve thermal and mechanical tuning of THz wave transmission. When the temperature of the ZrO2/VO2/PDMS metamaterial increases, VO2 changes from the insulating phase to the metallic phase, and the 1st (at 0.304 THz) and 2nd (at 0.414 THz) order magnetic resonances exhibit the tunability of 20 GHz and 15 GHz, respectively. When stretched, the 1(st) and 2(nd) order magnetic resonances show the tunability of 12 GHz and 10 GHz, respectively. In the meantime, there are accompanying changes in transmittance at the resonances. The ZrO2/VO2/PDMS all-dielectric metamaterial presented in this work provides an alternative strategy for developing actively tunable, flexible, and versatile THz devices. In addition, it has the merits of simple preparation and low cost, promising large-area and rapid preparation of meta-arrays. (c) 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
更多
查看译文
关键词
mechanical thz modulation,all-dielectric
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要