Multi-Omics Integration to Reveal the Mechanism of Sericin Inhibiting LPS-Induced Inflammation

International Journal of Molecular Sciences(2022)

引用 1|浏览0
暂无评分
摘要
Sericin is a natural protein with high application potential, but the research on its efficacy is very limited. In this study, the anti-inflammatory mechanism of sericin protein was investigated. Firstly, the protein composition of sericin extracts was determined by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). This was then combined with Enzyme-linked Immunosorbent Assay (ELISA) and Quantitative Real-time PCR (qRT-PCR), and it was confirmed that the anti-inflammation ability of sericin was positively correlated with the purity of sericin 1 protein. Finally, RNA-seq was performed to quantify the inhibitory capacity of sericin sample SS2 in LPS-stimulated macrophages. The gene functional annotation showed that SS2 suppressed almost all PRRs signaling pathways activated by lipopolysaccharides (LPS), such as the Toll-like receptors (TLRs) and NOD-like receptors (NLRs) signaling pathways. The expression level of adaptor gene MyD88 and receptor gene NOD1 was significantly down-regulated after SS2 treatment. SS2 also reduced the phosphorylation levels of NF-κB P65, P38, and JNK, thereby reducing the expressions of IL-1β, IL-6, INOS, and other inflammatory cytokines. It was confirmed that sericin inhibited LPS-induced inflammation through MyD88/NF-κB pathway. This finding provides necessary theoretical support for sericin development and application.
更多
查看译文
关键词
LPS,MyD88,NF-κB,PRRs signaling pathway,inflammation,sericin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要