NFIC1 inhibits the migration and invasion of MDA-MB-231 cells through S100A2-mediated inactivation of MEK/ERK pathway.

Archives of biochemistry and biophysics(2022)

引用 0|浏览5
暂无评分
摘要
NFIC is a potent transcriptional factor involved in many physiological and pathological processes, including tumorigenesis. However, the role of NFIC1, the longest isoform of NFIC, in the progression of triple negative breast cancer (TNBC) remains elusive. Our study demonstrates that overexpression of NFIC1 inhibits the migration and invasion of TNBC MDA-MB-231 cells. NFIC1 regulates the expression of S100A2, and knockdown of S100A2 reverses the inhibitive effects of NFIC1 on the migration and invasion of MDA-MB-231 cells. Furthermore, knockdown of S100A2 activates the MEK/ERK signaling transduction pathway that is inhibited by NFIC1 overexperssion. Treatment with MEK/ERK pathway inhibitor, U0126, abolishes the effects of S100A2 knockdown. In addition, overexpression of NFIC1 in MDA-MB-231 cells increases the expression of epithelial markers and decreases the expression of mesenchymal markers, and these effects could also be reversed by knockdown of S100A2. Collectively, these results demonstrate that NFIC1 inhibits the Epithelial-mesenchymal transition (EMT) of MDA-MB-231 cells by regulating S100A2 expression, which suppress the activation of MEK/ERK pathway. Therefore, our study confirms the role of NFIC1 as a tumor repressor in TNBC, and reveals the molecular mechanism through which NFIC1 inhibits the migration and invasion of MDA-MB-231 cells.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要