Microwave plasma-assisted reactive HiPIMS of InN films: Plasma environment and material characterisation

Surface and Coatings Technology(2023)

引用 3|浏览11
暂无评分
摘要
This work focuses on the low temperature fabrication process of InN thin films via microwave plasma-assisted reactive high power impulse magnetron sputtering (MAR-HiPIMS). The influence of microwave plasma on the HiPIMS discharge process at various nitrogen flows and microwave powers was monitored and characterised through in situ diagnostics, including following HiPIMS I(V,t) curves, optical emission spectroscopy (OES), as well as performing time-resolved Langmuir probe and time-of-flight mass spectroscopy (ToF-MS) measurements. This was followed by the deposition of InN films via standard reactive HiPIMS (reference sample) and MAR-HiPIMS and their characterisation via X-ray diffraction (XRD), reflectometry (XRR), as well as scanning and transmission electron microscopy (SEM, TEM). It was found that the microwave plasma facilitates the dissociation/activation of nitrogen species and supplies seed electrons to the magnetron discharge plasma. Furthermore, the energy of the incoming ions was determined via ToF-MS, and it was possible to identify their plasma origin and temporal behaviour. The produced R-HiPIMS sample was highly metallic, with no nitride phase detected. The MAR-HiPMS film, however, was stoichiometric and exhibited (0002) direction texturing, with an optical bandgap of approx. 1.5 eV, electron concentration of 2.72 × 1020 cm−3 and electron mobility of 7.16 cm2V−1 s−1 (in the range for polycrystalline InN).
更多
查看译文
关键词
Microwave plasma,Reactive HiPIMS,Indium7 nitride,Plasma characterisation,ToF-MS
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要