Rigid POSS Nanofiller Regulated the Interfacial Self-assembly of Particles into 2D Monolayer Superlattice with Fixed Interparticle Spacing

CHINESE JOURNAL OF CHEMISTRY(2023)

引用 0|浏览2
暂无评分
摘要
Plasmonic superlattices of nanoparticles (NPs) possess unique "surface lattice resonances " properties that facilitates their wide applications in plasmonic sensing, photocatalysis, and nanoscale light manipulation. However, it is still challenging to manufacture superlattices with precisely controllable NPs distance and break the size limitation of NPs. Herein, we provided an effective strategy to construct NPs superlattices via shape-persistent polyhedral oligosilsesquioxane (POSS) molecular nanoparticles govern interfacial assembly. As a nanoscale molecule with diameter of 1.5 nm, the POSS-SH molecule provides sufficient rigid steric hindrance and hydrophobic effect for tailoring the uniformity and controllable distance between NPs in superlattices. Interestingly, synergistically with hydrophilic ligands of polyethylene glycol (PEG-SH) with optimized ratio, the rigid POSS ligands can effectively regulate the distance between NPs in a fixed range of 2.3-2.8 nm, which is independent of ligands molecular weight and particle size. Furthermore, the effective approach can be universal to anisotropic NPs for manufacturing monolayer films with high NPs density. We believe this nanoscale molecule tailored interfacial self-assembly strategy can effectively break the size of NPs and assembly obstacles for superlattice monolayer film. Additionally, the definite distance between NPs in superlattices can minimize optical energy attenuation and facilitates the applications such as surface-enhanced Raman spectroscopy and photocatalysis.
更多
查看译文
关键词
Polyhedral oligosilsesquioxane, Plasmonic superlattices, Definite distances, Monolayers, Nanostructures, 2D materials
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要