Harvesting Triplet Excitons in High Mobility Emissive Organic Semiconductor for Efficiency Enhancement of Light-Emitting Transistors.

Advanced materials (Deerfield Beach, Fla.)(2023)

引用 4|浏览46
暂无评分
摘要
Organic light-emitting transistors (OLETs), a kind of highly integrated and minimized optoelectronic device, demonstrate great potential applications in various fields. The construction of high-performance OLETs requires the integration of high charge carrier mobility, strong emission, and high triplet exciton utilization efficiency in the active layer. However, it remains a significant long-term challenge, especially for single component active layer OLETs. Herein, the successful harvesting of triplet excitons in a high mobility emissive molecule, 2,6-diphenylanthracene (DPA), through the triplet-triplet annihilation process is demonstrated. By incorporating a highly emissive guest into the DPA host system, an obvious increase in photoluminescence efficiency along with exciton utilization efficiency results in an obvious enhancement of external quantum efficiency of 7.2 times for OLETs compared to the non-doped devices. Moreover, well-tunable multi-color electroluminescence, especially white emission with Commission Internationale del'Eclairage  of (0.31, 0.35), from OLETs is also achieved by modulating the doping concentration with a controlled energy transfer process. This work opens a new avenue for integrating strong emission and efficient exciton utilization in high-mobility organic semiconductors for high-performance OLETs and advancing their related functional device applications.
更多
查看译文
关键词
harvesting triplet excitons,high efficiency,high mobility,organic light-emitting transistors,organic semiconductors,strong emission,tunable emission colors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要