The Fornax3D project: Environmental effects on the assembly of dynamically cold disks in Fornax cluster galaxies

arxiv(2023)

引用 0|浏览54
暂无评分
摘要
We apply a population-orbit superposition method to 16 galaxies in the Fornax cluster observed with MUSE/VLT in the context of the Fornax3D project. By fitting the luminosity distribution, stellar kinematics, and age and metallicity maps simultaneously, we obtained the internal stellar orbit distribution, as well as the age and metallicity distribution of stars on different orbits for each galaxy. Based on the model, we decompose each galaxy into a dynamically cold disk (orbital circularity $\lambda_z\ge0.8$) and a dynamically hot non-disk component (orbital circularity $\lambda_z<0.8$), and obtain the surface-brightness, age, and metallicity radial profiles of each component. The galaxy infall time into the cluster is strongly correlated with galaxy cold-disk age with older cold disks in ancient infallers. We quantify the infall time $t_{\rm infall}$ of each galaxy with its cold-disk age using a correlation calibrated with TNG50 cosmological simulations. For galaxies in the Fornax cluster, we found that the luminosity fraction of cold disk in galaxies with $t_{\rm infall}>8$ Gyr are a factor of $\sim 4$ lower than in more recent infallers while controlling for total stellar mass. Nine of the 16 galaxies have spatially extended cold disks, and most of them show positive or zero age gradients; stars in the inner disk are $\sim 2-5$ Gyr younger than that in the outer disk, in contrast to the expectation of inside-out growth. Our results indicate that the assembly of cold disks in galaxies is strongly affected by their infall into clusters, by either removal of gas in outer regions or even tidally stripping or heating part of the pre-existing disks. Star formation in outer disks can stop quickly after the galaxy falls into the cluster, while star formation in the inner disks can last for a few Gyrs more, building the positive age gradient measured in cold disks.
更多
查看译文
关键词
galaxies: kinematics and dynamics, galaxies: elliptical and lenticular, cD, galaxies: star formation, galaxies: formation, galaxies: structure, galaxies: evolution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要