pH-responsive phthalate cashew gum nanoparticles for improving drugs delivery and anti-Trypanosoma cruzi efficacy.

International journal of biological macromolecules(2023)

引用 4|浏览15
暂无评分
摘要
Nanotechnology is a crucial technology in recent years has resulted in new and creative applications of nanomedicine. Polymeric nanoparticles have increasing demands in pharmaceutical applications and require high reproducibility, homogeneity, and control over their properties. Work explores the use of cashew phthalate gum (PCG) as a particle-forming polymer. PCG exhibited a pH-sensitive behavior due to the of acid groups on its chains, and control drug release. We report the development of nanoparticles carrying benznidazole. Formulations were characterized by DLS, encapsulation efficiency, drug loading, FTIR, pH-responsive behavior, release, and in vitro kinetics. Interaction between polymer and drug was an evaluated by molecular dynamics. Morphology was observed by SEM, and in vitro cytotoxicity by MTT assay. Trypanocidal effect for epimastigote and trypomastigote forms was also evaluated. NPs responded to the slightly basic pH, triggering the release of BNZ. In acidic medium, they presented small size, spherical shape, and good stability. It was indicated NP with enhanced biological activity, reduced cytotoxicity, high anti T. cruzi performance, and pH-sensitive release. This work investigated properties related to the development and enhancement of nanoparticles. PCG has specific physicochemical properties that make it a promising alternative to drug delivery, however, there are still challenges to be overcome.
更多
查看译文
关键词
Cashew gum polysaccharides,Chemical modification,Polymeric nanoparticles,Plackett-Burman design,Benznidazole,Anti-Trypanosoma cruzi
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要