Direct Tests of Cytochrome Function in the Electron Transport Chain of Malaria Parasites

biorxiv(2023)

引用 0|浏览15
暂无评分
摘要
The mitochondrial electron transport chain (ETC) of Plasmodium malaria parasites is a major antimalarial drug target, but critical cytochrome functions remain unstudied and enigmatic. Parasites express two distinct cyt c homologs ( c and c -2) with unusually sparse sequence identity and uncertain fitness contributions. P. falciparum cyt c -2 is the most divergent eukaryotic cyt c homolog currently known and has sequence features predicted to be incompatible with canonical ETC function. We tagged both cyt c homologs and the related cyt c 1 for inducible knockdown. Translational repression of cyt c and cyt c 1 was lethal to parasites, which died from ETC dysfunction and impaired ubiquinone recycling. In contrast, cyt c -2 knockdown or knock-out had little impact on blood-stage growth, indicating that parasites rely fully on the more conserved cyt c for ETC function. Biochemical and structural studies revealed that both cyt c and c -2 are hemylated by holocytochrome c synthase, but UV-vis absorbance and EPR spectra strongly suggest that cyt c -2 has an unusually open active site in which heme is stably coordinated by only a single axial amino-acid ligand and can bind exogenous small molecules. These studies provide a direct dissection of cytochrome functions in the ETC of malaria parasites and identify a highly divergent Plasmodium cytochrome c with molecular adaptations that defy a conserved role in eukaryotic evolution. SIGNIFICANCE STATEMENT Mitochondria are critical organelles in eukaryotic cells that drive oxidative metabolism. The mitochondrion of Plasmodium malaria parasites is a major drug target that has many differences from human cells and remains poorly studied. One key difference from humans is that malaria parasites express two cytochrome c proteins that differ significantly from each other and play untested and uncertain roles in the mitochondrial electron transport chain (ETC). Our study revealed that one cyt c is essential for ETC function and parasite viability while the second, more divergent protein has unusual structural and biochemical properties and is not required for growth of blood-stage parasites. This work elucidates key biochemical properties and evolutionary differences in the mitochondrial ETC of malaria parasites. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
cytochrome function,malaria parasites,electron transport chain
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要