谷歌浏览器插件
订阅小程序
在清言上使用

Cellular Absorption of Polystyrene Nanoplastics with Different Surface Functionalization and the Toxicity to RAW264.7 Macrophage Cells

Ecotoxicology and environmental safety(2023)

引用 7|浏览17
暂无评分
摘要
Nanoplastics (NPs) are a matter of widespread concern, as they are easily absorbed by a wide variety of organisms and accumulate in biological tissues. While there is evidence that nanoplastics are toxic to various organisms, few studies have investigated the mechanisms underlying the toxicities of NPs with different surface functionalizations to macrophage cells. In this study, mouse mononuclear macrophage (RAW264.7) cells were exposed to polystyrene nanoplastics (PS-NPs) with three different surface functionalizations, namely pristine polystyrene (PS), carboxyl-functionalized polystyrene (PS-COOH), and amino-functionalized polystyrene (PSNH2), to evaluate the cellular endocytosis, lactate dehydrogenase (LDH) release, cell viability, reactive oxygen species (ROS), mitochondrial membrane potential, apoptosis, and related gene expression. Results showed that all three PS-NPs were endocytosed into cells. However, in the concentration range of 0-100 mu g/mL, PS had no effect on cell viability or apoptosis, but it slightly increased cellular ROS and decreased mitochondrial membrane potential. PS-NH2 exhibited the highest cytotoxicity. PS-COOH and PS-NH2 induced ROS production, altered the mitochondrial membrane potential, and caused cell apoptosis regulated by the mitochondrial apoptosis pathway. Results also showed that cell membrane damage induced by PS-NH2 is one of the primary mechanisms of its cytotoxicity to RAW264.7 cells. The results of this study clarify the toxicities of PS-NPs with different surface functionalizations to macrophages, thereby improving the identification of immune system risks related to nanoplastics.
更多
查看译文
关键词
Nanoplastics,RAW264,7 cells,Cytotoxicity,Reactive oxygen species,Cell membrane damage,Apoptosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要