Significantly activated persulfate by novel carbon quantum dots-modified N-BiOCl for complete degradation of bisphenol-A under visible light irradiation

The Science of the total environment(2023)

引用 6|浏览20
暂无评分
摘要
The practical application of bismuth-based photocatalysts in the field of micropollutant photodegradation is limited due to their weak light absorption and rapid charge recombination. Herein, we have developed a novel carbon quan-tum dots-modified N-BiOCl (CDs-N-BiOCl) photocatalyst to activate persulfate (PS) for the complete elimination of endocrine-disruptor bisphenol A (BPA) under visible light irradiation. The photoelectric properties characterization shows that N atoms could replace Cl atoms or adsorb on Bi atoms to form local N 1s states in the BiOCl lattice, accom-panied by the introduction of doping energy levels that shorten the electron migration distance. Meanwhile, the dec-orated CDs could effectively accept the photoinduced electrons from N-BiOCl conduction band to facilitate the charge separation. Thus, the 7%CDs-N-BiOCl (7CNB) nanocomposite synergistically activated PS realized rapid and effective degradation of BPA within 20 min (degradation efficiency and mineralization reached 100 % and 66.4 % respectively). Moreover, the 7CNB/PS system displayed favorable adaptability, durability, and interference resistance. Furthermore, the biotoxicity experiments demonstrated that the photodegradation intermediates promoted the growth of Escherichia coli which indicates its eco-friendliness for practical application. Finally, the electron transfer mechanism and the for-mation of reactive oxygen species in the photodegradation process were interpreted. In short, this work will present a promising strategy for bismuth-based photocatalysts to be used for the efficient treatment of real water bodies under visible light irradiation.
更多
查看译文
关键词
BiOCl,Carbon quantum dots,Nitrogen doped,Persulfate,Photocatalysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要