Effective Robustness against Natural Distribution Shifts for Models with Different Training Data


引用 0|浏览76
``Effective robustness'' measures the extra out-of-distribution (OOD) robustness beyond what can be predicted from the in-distribution (ID) performance. Existing effective robustness evaluations typically use a single test set such as ImageNet to evaluate ID accuracy. This becomes problematic when evaluating models trained on different data distributions, e.g., comparing models trained on ImageNet vs. zero-shot language-image pre-trained models trained on LAION. In this paper, we propose a new effective robustness evaluation metric to compare the effective robustness of models trained on different data distributions. To do this we control for the accuracy on multiple ID test sets that cover the training distributions for all the evaluated models. Our new evaluation metric provides a better estimate of the effectiveness robustness and explains the surprising effective robustness gains of zero-shot CLIP-like models exhibited when considering only one ID dataset, while the gains diminish under our evaluation.
AI 理解论文