谷歌浏览器插件
订阅小程序
在清言上使用

IL-11 Drives the Phenotypic Transformation of Tracheal Epithelial Cells and Fibroblasts to Enhance Abnormal Repair after Tracheal Injury

BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH(2023)

引用 2|浏览20
暂无评分
摘要
Tracheal stenosis (TS) is a multifactorial and heterogeneous disease that can easily lead to respiratory failure and even death. Interleukin-11 (IL-11) has recently received increased attention as a fibrogenic factor, but its function in TS is uncertain. This study aimed to investigate the role of IL-11 in TS regulation based on clinical samples from patients with TS and a rat model of TS produced by nylon brush scraping. Using lentiviral vectors expressing shRNA (lentivirus-shRNA) targeting the IL-11 receptor (IL-11Rα), we lowered IL-11Rα levels in the rat trachea. Histological and immunostaining methods were used to evaluate the effects of IL-11Rα knockdown on tracheal injury, molecular phenotype, and fibrosis in TS rats. We show that IL-11 was significantly elevated in circulating serum and granulation tissue in patients with TS. In vitro, TGFβ1 dose-dependently stimulated IL-11 secretion from human tracheal epithelial cells (Beas-2b) and primary rat tracheal fibroblasts (PRTF). IL-11 transformed the epithelial cell phenotype to the mesenchymal cell phenotype by activating the β-catenin pathway. Furthermore, IL-11 activated the atypical ERK signaling pathway, stimulated fibroblasts proliferation, and transformed fibroblasts into alpha-smooth muscle actin (α-SMA) positive myofibroblasts. IL-11-neutralizing antibodies (IL-11NAb) or ERK inhibitors (U0126) inhibited IL-11 activity and downregulated fibrotic responses involving TGFβ/SMAD signaling. In vivo, IL-11Rα knockdown rats showed unobstructed tracheal lumen, relatively intact epithelial structure, and significantly reduced granulation tissue proliferation and collagen fiber deposition. Our findings confirm that IL-11 may be a target for future drug prevention and treatment of tracheal stenosis.
更多
查看译文
关键词
Fibrosis,IL-11,Tracheal stenosis,Phenotypic transformation,Therapy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要