The timing of transcription of RpoS-dependent genes varies across multiple stresses

biorxiv(2023)

引用 0|浏览2
暂无评分
摘要
The alternative sigma factor RpoS regulates transcription of over 1000 genes in Escherichia coli in response to many different stresses. RpoS levels rise continuously after exposure to stress, and the consequences of changing levels of RpoS for the temporal patterns of expression of RpoS-regulated genes has not been described. We measured RpoS levels at various times during the entry to stationary phase, or in response to high osmolarity or low temperature, and found that the time required to reach maximum levels varied by several hours. We quantified the transcriptome across these stresses using RNA-seq. The number of differentially expressed genes differed among stresses, with 1379 DE genes were identified in in stationary phase, 633 in high osmolarity, and 302 in cold shock. To quantify the timing of gene expression, we fit sigmoid or double sigmoid models to differentially expressed genes in each stress. During the entry into stationary phase, genes whose expression rose earlier tended to be those that had been found to respond most strongly to low levels of RpoS. The timing of individual genes' expression was not correlated across stresses. Taken together, our results demonstrate E. coli activates RpoS with different timing in response to different stresses, which in turn generates a unique pattern of timing of the transcription response to each stress. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要