In silico prediction of Antifungal compounds from Natural sources towards Lanosterol 14-alpha demethylase (CYP51) using Molecular docking and Molecular dynamic simulation.

Journal of molecular graphics & modelling(2023)

引用 3|浏览5
暂无评分
摘要
An increase in the occurrence of fungal infections throughout the world, as well as the rise of novel fungal strains and antifungal resistance to commercially available drugs, suggests that new therapeutic choices for fungal infections are needed. The purpose of this research was to find new antifungal candidates or leads of secondary metabolites derived from natural sources that could effectively inhibit the enzymatic activity of Candida albicans lanosterol 14-alpha demethylase (CYP51) while also having good pharmacokinetics. In silico prediction of the drug-likeness, chemo-informatics and enzyme inhibition indicate that the 46 compounds derived from fungi, sponges, plants, bacteria and algae sources have a high novelty to meet all five requirements of Lipinski's rules and impede enzymatic function. Among the 15 candidate molecules with strong binding affinity to CYP51 investigated by molecular docking simulation, didymellamide A-E compounds demonstrated the strongest binding energy against the target protein at -11.14, -11.46, -11.98, -11.98, and -11.50 kcal/mol, respectively. Didymellamide molecules bind to comparable active pocket sites of antifungal ketoconazole and itraconazole medicines by hydrogen bonds forming to Tyr132, Ser378, Met508, His377 and Ser507, and hydrophobic interactions with HEM601 molecule. The stability of the CYP51-ligand complexes was further investigated using molecular dynamics simulations that took into account different geometric features and computed binding free energy. Using the pkCSM ADMET descriptors tool, several pharmacokinetic characteristics and the toxicity of candidate compounds were assessed. The findings of this study revealed that didymellamides could be a promising inhibitor against these CYP51 protein. However, there is still a need for further in vivo and in vitro studies to support these findings.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要