谷歌浏览器插件
订阅小程序
在清言上使用

The Use of Bi-Potentiostat As a Simple and Accurate Electrochemical Approach for the Determination of Orthophosphate in Seawater.

Sensors(2023)

引用 1|浏览23
暂无评分
摘要
Autonomous on-site monitoring of orthophosphate (PO43−), an important nutrient for primary production in natural waters, is urgently needed. Here, we report on the development and validation of an on-site autonomous electrochemical analyzer for PO43− in seawater. The approach is based on the use of flow injection analysis in conjunction with a dual electrochemical cell (i.e., a bi-potentiostat detector (FIA-DECD) that uses two working electrodes sharing the same reference and counter electrode. The two working electrodes are used (molybdate/carbon paste electrode (CPE) and CPE) to correct for matrix effects. Optimization of squarewave voltammetry parameters (including step potential, amplitude, and frequency) was undertaken to enhance analytical sensitivity. Possible interferences from non-ionic surfactants and humic acid were investigated. The limit of quantification in artificial seawater (30 g/L NaCl, pH 0.8) was 0.014 µM for a linear concentration range of 0.02–3 µM. The system used a Python script for operation and data processing. The analyzer was tested for ship-board PO43− determination during a four-day research cruise in the North Sea. The analyzer successfully measured 34 samples and achieved a good correlation (Pearson’ R = 0.91) with discretely collected water samples analyzed using a laboratory-based colorimetric reference analyzer.
更多
查看译文
关键词
Bi-potentiostat,electrochemical sensor,orthophosphate sensor,Python programming,phosphomolybdate complex method
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要